

CNOSSOS-EU como método comparable. Análisis con otros métodos de cálculo y resultados anteriores.

MIGUEL AUSEJO PRIETO

Director de Unidad de Negocio / Eurocontrol, Grupo Apave ST- 30 Contaminación acústica

- 1 INTRODUCCIÓN
- 2 DEFINICIÓN DEL ESTUDIO
- **3** RESUMEN DE RESULTADOS PRINCIPALES
- 4 CONCLUSIONES

01INTRODUCCIÓN

Marco del estudio

GUÍA TÉCNICA PARA LA APLICACIÓN DEL MÉTODO COMÚN EUROPEO DE EVALUACIÓN DEL RUIDO AMBIENTAL (CNOSSOS-EU) EN LOS ESTUDIOS DE RUIDO EN ESPAÑA

GUÍA BÁSICA DE RECOMENDACIONES PARA LA APLICACIÓN DE LOS MÉTODOS COMUNES DE EVALUACIÓN DEL RUIDO EN **EUROPA (CNOSSOS-EU)**

Recomendaciones para su aplicación a la evaluación del ruido de fuentes industriales, carreteras, ferrocarriles y aglomeraciones

MINISTERIO PARA LA TRANSICIÓN ECOLÓGICA Y EL RETO DEMOGRÁFICO Centro de Estudios y Experimentación de Obras Públicas (CEDEX)

Ministerio para la Transición Ecológica y el Reto Demográfico

Secretaría de Estado de Medio Ambiente Dirección General de Calidad y Evaluación Ambiental Subdirección General Aire Limpio y Sostenibilidad Industrial

Centro de Estudios y Experimentación de Obras Públicas Centro de Estudios de Técnicas Ampliadas Área de Ruido Ambiental

Normativa

- Directiva 2002/49/CE del Parlamento Europeo (END).

Métodos interinos:

- Método nacional de cálculo francés, NMPB Routes 96 (SETRA-CERTULCPC-CSTB), establecido como método de referencia para tráfico viario.
- Método nacional de cálculo de los **Países Bajos SRM II** (Reken-en Meetvoorschrift Railverkeerslawaai'96), establecido como método de referencia para **tráfico ferroviario**.
- Método ISO 9613 2 establecido como método de referencia para ruido industrial.
- Método **ECAC.CEAC Doc. 29** establecido como método de referencia para **ruido de aeronaves**.
- Desde 2008, se comienza a trabajar en CNOSSOS-EU (JRC Dirección General de la CE).
- Directiva 2015/996 de la Comisión.
- España traspone la Directiva 2015/996 mediante la Orden PCI/1319/2018.
- La utilización de CNOSSOS-EU es vinculante para los Estados miembros desde el 31 de diciembre de 2018.

MÉTODO DE CÁLCULO

CNOSSOS-EU:

MÉTODO DE CÁLCULO DE LA FUENTE (EMISIÓN)
+
MÉTODO DE CÁLCULO DE PROPAGACIÓN

NECESIDAD DEL ESTUDIO

La comparación entre resultados de diferentes rondas es clave, no sólo para conocer el histórico de la contaminación acústica sino para poder evaluar la efectividad de las medidas implementadas por los Planes de Acción contra el Ruido sobre el foco de ruido concreto y evaluar la mejora continua de dichos planes. Esto se establece claramente en el Artículo 13 del Real Decreto 1513/2005, por el que se desarrolla la Ley 37/2003:

Con el fin de que los resultados obtenidos en los procesos de evaluación del ruido ambiental sean homogéneos y comparables, las administraciones competentes velarán por la implantación de sistemas de control que aseguren la correcta aplicación de los métodos y procedimientos de evaluación establecidos en este real decreto.

02DEFINICIÓN DEL ESTUDIO

PREMISAS GENERALES

- Focos de ruido a considerar.
- Definición de variables y escenarios.
- Representatividad del estudio.

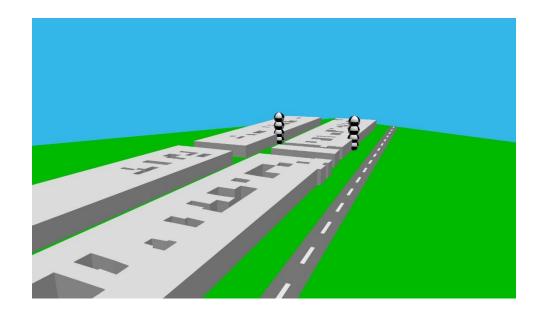
DEFINICIÓN DEL PROYECTO ACOTAR CASOS

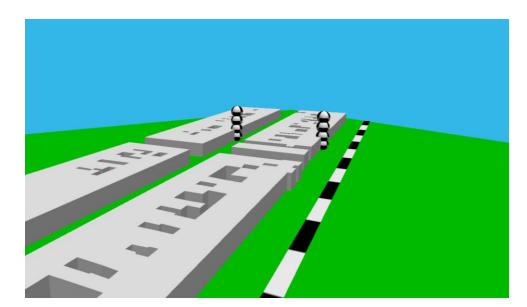
Variables contempladas en el estudio:

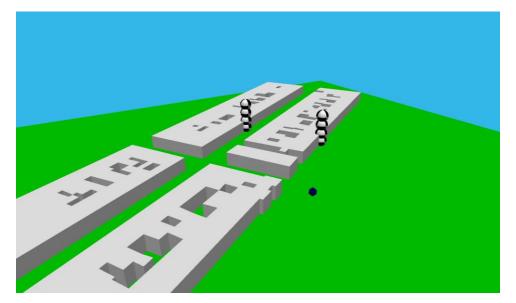
- Alturas.
- Distancias.
- Periodos horarios (condiciones de propagación).
- IMD.
- Porcentaje de vehículos pesados.
- Velocidad.
- Pantallas.
- Alturas de edificios (obstáculos).
- Tipologías de trenes.
- Varias líneas de edificios (obstáculos).
- Tipologías de focos industriales.
- Absorción del terreno.

- Niveles de potencia.
- Niveles de presión.
- Mallas verticales.

Congreso Nacional del Medio Ambiente


Foco de ruido	Característica principal	Variable #1	Variable #2	V. Análisis	Comentarios	
Tráfico viario	IMD > 16500 vehículos	10% pesados	V (120 km/h)		Grandos oios viarios MER 1P (IMD alta)	
	TIVID > 10300 VETICUIOS	25% pesados	V (120 KIII/II)		Grandes ejes viarios MER 1R (IMD alta)	
	IMD > 8500 vehículos	10% pesados	V (100 km/h)		Crandos aias viarios MED 2D, 2D, 4D	
	IIVID > 8300 VETIICUIOS	25% pesados	V (100 KIII/II)	Potencia de la	Grandes ejes viarios MER 2R, 3R, 4R	
	IMD = 4250 vehículos	5% pesados	V (90 km/h)	fuente	Zonas sin MER	
	IIVID – 4230 VETIICUIOS	10% pesados	V (90 KIII/II)		ZOTIAS SITI IVIEN	
Tráfico viario + aglomeración	Vía urbana con tráfico elevado	Edificios 4 m	V (50 km/h)	LAeq en receptores	Efecto de difracciones y atenuaciones en entorno urbano	
	via dibana con tranco cie vado	Edificios 30 m	V (30 KIII/II)			
	Vía urbana con tráfico medio	Edificios 4 m	V (50 km/h)			
	Via di Sana con tranco medio	Edificios 30 m	V (30 KIII) II)			
Tráfico viario + Pantallas acústicas	IMD > 8500 vehículos	10% pesados	V (100 km/h)	LAeq en Receptores	Efecto de pantallas acústicas	
	IMD > 165 vehículos	Tipología Alta velocidad		LAeq en receptores	Grandes ejes viarios MER 1R (IMD alta)	
Tráfico ferroviario	TIVID > 103 VETIICUIOS	Tipología media distancia + cercanías			Grandes ejes viarios iviek ik (livid alta)	
	IMD > 83 vehículos	Tipología Alta velocidad			Grandes ejes ferroviarios MER 2R, 3R, 4R	
	TIVID > 03 VCTTCUTO3	Tipología media distancia + cercanías	Vmax (por tipología)			
		Tipología Alta velocidad			Zonas sin MER	
	IMD = 40 vehículos	Tipología media distancia + cercanías				
		Mercancias				
	Vía urbana con tráfico elevado	1 línea de edificios			Efecto de difracciones y atenuaciones en entorno urbano	
Tráfico ferroviario + aglomeración	via dibana con tranco cie vado	2 líneas de edificios	Tipología media distancia + cercanías			
. Tranco removiano i agiomeracion	Vía urbana con tráfico medio	1 línea de edificios	inpologia incula distancia i cercanias			
	Via di Sana con tranco medio	2 líneas de edificios				
Tráfico ferroviario + Pantallas acústicas	IMD > 83 vehículos	Tipología media distancia + cercanías	Vmax (por tipología)	LAeq en Receptores	Efecto de pantallas acústicas	
	Focos puntuales, lineales, superficiales y	Foco puntual (PWL=95 altura 1,5)			Chequear diferencias de propagación	
Ruido industrial	volumétricos	Foco lineal (PWL=95 altura 1,5)	Varias distancias			
	en campo libre	Foco superficial (PWL=95 altura 0)	varias distancias			
	en campo nore	Foco superficial vertical (PWL=95 desarrollo 5)				
Ruido industrial + aglomeración	Foco puntual con obstáculos	Edificios 4 m				
	1 oco paritaar con obstacaros	Edificios 30 m		LAeq en	Chequear diferencias de difracción H y V	
	Foco puntual desplazado con obstáculos	Edificios 4 m	Ubicación del foco	Receptores		
	1 000 particul desprazado com obstacaros	Edificios 30 m	objection del roco			
	Foco volumétrico con obstáculos	Edificios 4 m				
	1 oco volumetrico con obstacaros	Edificios 30 m				
Ruido industrial +	Focos puntuales y volumétricos	Foco puntual (PWL=95 altura 1,5)	Varias distancias		Chequear diferencias de difracción H y V	
Pantallas acústicas	con pantallas	Foco superficial vertical (PWL=95 desarrollo 5)			scquedi direferiolas de diffaccion fi y v	
Absorción del terreno en tráfico viario,	Tráfico viario terreno reflectante/absorbente	IMD > 8500 vehículos	10% pesados	LAeg en	Chequear diferencias de propagación	
ferroviario y ruido industrial	Tráfico ferroviario terreno reflectante/absorbente	IMD > 83 vehículos	Tipología media distancia + cercanías	Receptores		
	Ruido industrial terreno reflectante/absorbente	Foco puntual	PWL=95 altura 1,5 metros	neceptores		





EJEMPLOS DE ESCENARIOS

EJEMPLOS DE RESULTADOS DE MALLA VERTICAL

Foco de ruido industrial (puntual)

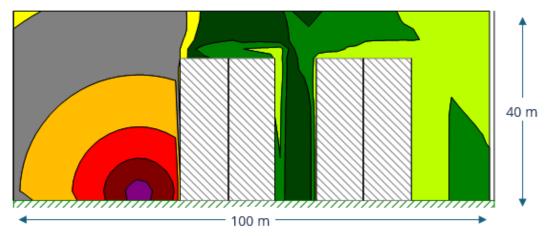


Ilustración 20. Malla vertical calculada según el método CNOSSOS-EU.

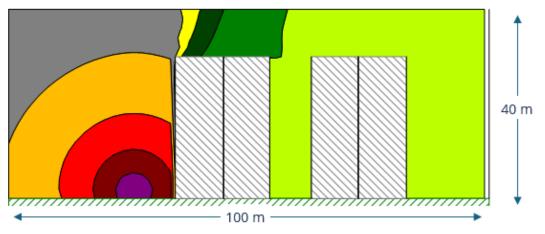


Ilustración 21. Malla vertical calculada según el método interino.

casos 6 4

45

REPRESENTATIVIDAD

Pares de datos		Caso 1	Caso 2	Caso 3	Caso 4	Caso 5	Caso 6	Caso 7	Pares datos Potencia	Pares datos Presión	
Tráfico viario	Campo libre	48	48	48	48	48	48		18	288	
	Aglomeraciones	24	24	24	24				6	96	
	Pantallas	48	48						0	96	
Tráfico ferroviarioviario	Campo libre	48	48	48	48	48	48	48	21	336	
	Aglomeraciones	24	24	24	24				12	96	
	Pantallas	48	48						0	96	
Ruido industrial	Campo libre	48	48	48	48				0	192	
	Aglomeraciones	24	24	24	24	24	24		0	144	
	Pantallas	48	48	48	48				0	192	
Absorción	Varios	48	48	48	48	48	48		0	288	
									57	1824	

03
RESULTADOS PRINCIPALES

Ruido de tráfico viario

- **Porcentaje de vehículos pesados**: El porcentaje de vehículos pesados tiene mayor influencia en la potencia acústica en el método interino (NMPB Routes 96) que en el método CNOSSOS-EU.
- **Velocidad**: La variación en la velocidad tiene mayor influencia en la potencia acústica en el método CNOSSOS-EU.
- **Distancia y altura de receptores:** Las mayores diferencias en los niveles de presión sonora se observan a baja altura y a partir de 25 metros de distancia, donde los resultados obtenidos con el método interino son, en general, superiores en más de 5 dB(A) respecto al método CNOSSOS-EU.
- **Obstáculos**: La presencia de edificios o pantallas acústicas reduce las diferencias de niveles de presión sonora entre métodos en los receptores a baja altura y en los receptores apantallados; sin embargo, los niveles de presión sonora obtenidos según el método interino siguen siendo superiores.
- Conclusión general: En términos generales y considerando las variables y condiciones estudiadas, el método interino arroja resultados superiores al método CNOSSOS-EU para el ruido de tráfico viario.

Ruido de tráfico ferroviario

- Trenes de alta velocidad: Se observan niveles de presión sonora más altos según el método interino (SRM II), con diferencias que oscilan entre 4 dB(A) y más de 6 dB(A) en comparación con el método CNOSSOS-EU.
- Trenes de media distancia, cercanías y mercancías: Las diferencias son menores que las obtenidas con los trenes de alta velocidad, siendo los niveles de presión sonora previstos según el método CNOSSOS-EU entre 0,1 dB(A) y 3,5 dB(A) superiores.
- **Propagación vertical**: Existen diferencias considerables en la propagación vertical, atribuibles en parte a la directividad definida por el método CNOSSOS-EU.
- **Obstáculos:** La presencia de edificios altos o pantallas acústicas reduce las diferencias entre métodos en los receptores apantallados.
- Conclusión general: En términos generales y considerando las variables y condiciones estudiadas, el método interino arroja resultados superiores al método CNOSSOS-EU para el ruido de tráfico ferroviario. Sin embargo, es importante destacar que la comparación entre métodos no es obvia ni inmediata, ya que tanto los datos de entrada como la formulación cambian sustancialmente.

Propagación vertical del tráfico ferroviario (p.e. alta velocidad)

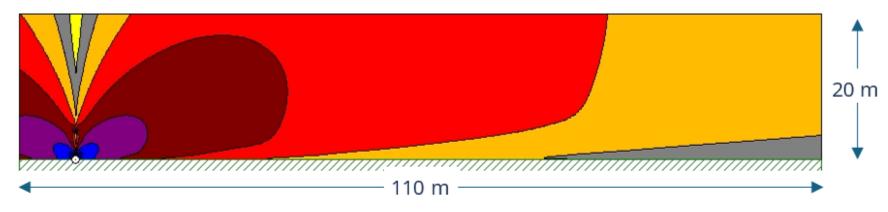


Ilustración 48. Malla vertical calculada según el método CNOSSOS-EU.

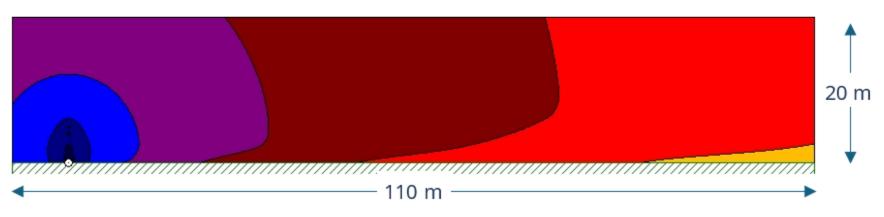


Ilustración 49. Malla vertical calculada según el método interino.

Ruido industrial

- **Focos puntuales, lineales y superficies verticales:** Los niveles de presión sonora previstos según el método interino (ISO 9613 2) son superiores a los previstos según el método CNOSSOS-EU, con diferencias relativamente constantes en distancia y altura de alrededor de 1 dB(A).
- Focos superficiales: También se obtienen niveles superiores según el método interino, con diferencias que aumentan a baja altura y con la distancia, llegando a más de 3,5 dB(A).
- **Pantallas acústicas:** En los casos analizados con pantallas acústicas, las diferencias entre métodos son mayores que sin apantallamiento. Los niveles de presión sonora son superiores según el método interino, con diferencias relativamente constantes de entre 4 dB(A) y 5 dB(A).
- Edificios y difracción:
 - o **Sin difracción lateral:** Cuando los receptores están apantallados y no existe difracción lateral, los niveles de presión sonora previstos según el método CNOSSOS-EU son superiores, alcanzando diferencias de en torno a 6 dB(A).
 - o **Con difracción lateral:** En los casos en que existe difracción lateral, se observan niveles mayores de presión sonora según el método interino, con diferencias de en torno a 5 dB(A).
- **Focos superficiales verticales continuos:** Donde coexisten la difracción vertical y la horizontal, el método interino presenta niveles mayores de presión sonora, con diferencias de alrededor de 7,5 dB(A).
- **Propagación vertical:** En la propagación existen ciertas diferencias en la vertical del foco acústico, donde el método CNOSSOS-EU muestra un componente vertical especialmente en focos puntuales, que no aparece en el método interino.
- Conclusión general: Con respecto al ruido industrial, la variabilidad de resultados en la comparación entre el método interino y el método CNOSSOS-EU hace que no se pueda generalizar. Sin embargo, se observan diferencias elevadas, especialmente cuando se comparan escenarios con muchos obstáculos y con difracción vertical y horizontal.

Efectos de la absorción del terreno

 Absorción del terreno: En general, el cambio en la absorción del terreno tiene un mayor efecto en los niveles de presión sonora previstos según el método CNOSSOS-EU. Con terreno reflectante, existe menor diferencia en la propagación entre ambos métodos.

04
CONCLUSIONES

Conclusiones

- Comparación compleja. Asegurar que se comparan modelos "comparables".
- Ruido de tráfico y ruido industrial más fácilmente comparable.
- Ruido ferroviario complejo por diferencias metodológicas.
- Sin generalizar por completo, pero en el estudio se han obtenido los siguientes datos:
 - Ruido viario: L interino > L CNOSSOS-EU (hasta 5 dBA).
 - Ruido ferroviario (alta velocidad): L interino > L CNOSSOS-EU.
 - Ruido ferroviario (media dist., merc. y cercanías): L CNOSSOS-EU > L interino.
 - Ruido ferroviario: propagación vertical muy diferente entre métodos.
 - Ruido industrial: **gran variabilidad**. Diferencias elevadas cuando se comparan escenarios con **muchos obstáculos y con difracción vertical y horizontal**.
 - Absorción del terreno: más crítica en método CNOSSOS-EU.

